DIGITAL

Il mercato dei big data analytics in Italia vale 1,1 miliardi di euro (+22%)


23.11.2017
Carlo Vercellis

Il mercato dei Big Data Analytics in Italia continua la sua crescita nel 2017, segnando un aumento del 22% e raggiungendo un valore complessivo di 1,1 miliardi di euro.

Per la maggior parte resta appannaggio delle grandi imprese, che si dividono l’87% della spesa complessiva, mentre le Pmi si fermano a una quota del 13%, anche se i loro investimenti aumentano del 18% rispetto allo scorso anno.

Il 42% della spesa per gli Analytics è dedicata ai software (database, strumenti e applicativi per acquisire, visualizzare e analizzare i dati), il 33% ai servizi (personalizzazione dei software, integrazione con sistemi informativi aziendali e riprogettazione dei processi), il 25% alle infrastrutture abilitanti (capacità di calcolo, server e storage).

Nel 2017 cresce la consapevolezza delle aziende italiane delle opportunità offerte: il 43% dei CIO italiani vede la Business Intelligence, i Big Data e gli Analytics come la principale priorità di investimento nel 2018. La maggiore consapevolezza si riflette anche nella crescita delle competenze impiegate: quasi un’impresa su due ha già inserito nel proprio organico uno o più data scientist, passando dal 31% del 2016 al 45% di quest’anno.

Questi i risultati della ricerca dell’Osservatorio Big Data Analytics & Business Intelligence della School Management del Politecnico di Milano (osservatori.net) presentata al convegno ‘Big Data is now: tomorrow is too late’.

La ricerca ha coinvolto attraverso una survey oltre 1.100 CIO, Responsabili IT e c-level di altre funzioni di medie e grandi organizzazioni e analizzato oltre 1.100 player dell’offerta tramite interviste dirette o fonti secondarie.

“Il valore del mercato Analytics continua a crescere a ritmi elevati e quest’anno ha superato la soglia del miliardo di euro – commenta Carlo Vercellis, Responsabile scientifico dell’Osservatorio -. È il segnale che le grandi imprese ormai conoscono le opportunità offerte dai Big Data e hanno una strategia data driven orientata agli aspetti predittivi e all’automatizzazione di processi e servizi. L’utilizzo dei Big Data Analytics è indispensabile per non rischiare di perdere capacità competitiva: le imprese che negli anni scorsi hanno saputo approfittarne, affiancando all’innovazione tecnologica un modello organizzativo capace di governare il cambiamento, oggi si trovano in portafoglio processi più efficienti, nuovi prodotti e servizi con un ritorno dell’investimento certo e misurabile. Anche le PMI mostrano un diffuso interesse per l’analisi dei dati, con l’utilizzo di strumenti di data visualization e analytics di base, ma anche servizi di supporto alle attività di marketing. Sebbene coprano ancora oggi soltanto il 13% del mercato, la crescita della spesa è un segnale che, seppur più lentamente, si stanno muovendo nella giusta direzione”.

L’area di maggiore interesse per le imprese è quella dei predictive analytics, già diffusi nel 73% dei casi (contro il 59% del 2016). Sono ancora indietro, invece, i prescriptive analytics, tool avanzati capaci di proporre soluzioni sulla base delle analisi svolte, presenti solo nel 33% delle grandi imprese, e ancora di più gli automated analytics, capaci di avviare autonomamente l’azione proposta secondo il risultato delle analisi, diffusi solo nel’11% delle organizzazioni.

Il settore più interessato nel mercato degli Analytics tra le grandi imprese è quello bancario (28%), seguito da manifatturiero (24%), telco e media (14%), PA e sanità (7%), servizi (8%), GDO (7%), utility (6%) e assicurazioni (6%).

Se si prende in considerazione la crescita però guidano la graduatoria assicurazioni, manifatturiero e servizi, con tassi superiori al 25%, seguiti da banche, GDO e telco e media, con tassi tra il 15% ed il 25%, poi utility e PA e sanità.

Tra le aziende che hanno avviato iniziative, gli obiettivi dei progetti di Big Data Analytics sono stati soprattutto il miglioramento dell’engagement con il cliente (70%), l’incremento delle vendite (68%), la riduzione del time to market (66%), l’ampliamento dell’offerta di nuovi prodotti e servizi e l’ottimizzazione dell’offerta attuale per aumentare i margini (64% ciascuno), la riduzione dei costi (57%) e la ricerca di nuovi mercati (41%).

Tra i risultati effettivamente ottenuti spicca il migliorare l’engagement con il cliente per la totalità delle imprese (il 100% degli intervistati), il 91% ha incrementato le vendite, il 78% ha ridotto il tempo che intercorre fra l’ideazione e commercializzazione del prodotto, il 67% ha ampliato l’offerta di prodotti e servizi, il 73% ha ottimizzato l’offerta per aumentare i margini di guadagno, il 56% ha contenuto i costi e il 38% cercato nuovi mercati.

Tra gli ostacoli principali ai progetti di Big Data Analytics, spiccano la mancanza di impegno e coinvolgimento da parte del top management (53%) e la mancanza di competenze e figure organizzative interne come Chief Data Officer e Data Scientist (51%).

Nonostante la loro quota di spesa complessiva in Analytics sia cresciuta del 18% nel 2017, il ruolo delle piccole e medie imprese è ancora marginale nel mercato degli Analytics.

Lo rivela l’indagine dell’Osservatorio su 947 imprese che impiegano da 2 a 249 addetti, da cui emerge che fra le PMI la diffusione di sistemi di Big Data Analytics si attesti solo al 7%.

Un altro ostacolo è la mancanza di competenze adeguate, difficili sia da sviluppare internamente che da reperire all’esterno, mentre una PMI su dieci è preoccupata dagli aspetti legati alla sicurezza informatica.

Gli incentivi principali che invece spingono le PMI a investire in questa tipologia di progetti sono la possibilità di cogliere nuove opportunità di business (per tre aziende su cinque), l’esigenza di ottimizzare i processi e rendere più efficaci le campagne di marketing.

“Tendenziamente le PMI non sono ancora alla ricerca di data scientist, inteso come quel profilo trasversale in grado di far incontrare conoscenze informatiche, di business e capacità di storytelling – analizza Vercellis -. L’approccio con il quale le organizzazioni con meno di 250 addetti affrontano i Big Data Analytics è infatti ancora di tipo tradizionale: nelle piccole realtà l’analisi dei dati, seppur sviluppata con tecnologie innovative, rimane una prerogativa dell’IT o un argomento complesso da dover richiedere in modo sistematico la consulenza di società esterne specializzate”.